ScienceDaily (Oct. 23, 2012) ? For the first time, an assembly of thousands of nano-machines capable of producing a coordinated contraction movement extending up to around ten micrometers, like the movements of muscular fibers, has been synthesized by a CNRS team from the Institut Charles Sadron.
This innovative work, headed by Nicolas Giuseppone, professor at the Universit? de Strasbourg, and involving researchers from the Laboratoire de Mati?re et Syst?mes Complexes (CNRS/Universit? Paris Diderot), provides an experimental validation of a biomimetic approach that has been conceptualized for some years in the field of nanosciences. This discovery opens up perspectives for a multitude of applications in robotics, in nanotechnology for the storage of information, in the medical field for the synthesis of artificial muscles or in the design of other materials incorporating nano-machines (endowed with novel mechanical properties). This work has been published in the online version of the journal Angewandte Chemie International Edition.
Nature manufactures numerous machines known as "molecular." Highly complex assemblies of proteins, they are involved in essential functions of living beings such as the transport of ions, the synthesis of ATP (the "energy molecule"), and cell division. Our muscles are thus controlled by the coordinated movement of these thousands of protein nano-machines, which only function individually over distances of the order of a nanometer. However, when combined in their thousands, such nano-machines amplify this telescopic movement until they reach our scale and do so in a perfectly coordinated manner. Even though synthetic chemists have made dazzling progress over the last few years in the manufacture of artificial nano-machines (the mechanical properties of which are of increasing interest for research and industry), the coordination of several of these machines in space and in time hitherto remained an unresolved problem.
Not anymore: for the first time, Giuseppone's team has succeeded in synthesizing long polymer chains incorporating, via supramolecular bonds, thousands of nano-machines each capable of producing linear telescopic motion of around one nanometer. (A supramolecular bond is an interaction between different molecules that is not based on a traditional "covalent" chemical bond but instead on what are known as "weak interactions," thereby constituting complex molecular structures.) Under the influence of pH, their simultaneous movements allow the whole polymer chain to contract or extend over about 10 micrometers, thereby amplifying the movement by a factor of 10,000, along the same principles as those used by muscular tissues. Precise measurements of this experimental feat have been performed in collaboration with the team led by Eric Buhler, a physicist specialized in radiation scattering at the Laboratoire Mati?re et Syst?mes Complexes (CNRS/Universit? Paris Diderot).
These results, obtained using a biomimetic approach, could lead to numerous applications for the design of artificial muscles, micro-robots or the development of new materials incorporating nano-machines endowed with novel multi-scale mechanical properties.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by Centre national de la recherche scientifique (CNRS).
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- Guangyan Du, Emilie Moulin, Nicolas Jouault, Eric Buhler, Nicolas Giuseppone. Muscle-like Supramolecular Polymers: Integrated Motion from Thousands of Molecular Machines. Angewandte Chemie, 2012; DOI: 10.1002/ange.201206571
Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
pac 12 tournament sun storm tri international criminal court ios 5.1 apple tv update new ipad release
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.